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Abstract
The asymptotic iteration method is applied to calculate the angular spheroidal
eigenvalues λm

� (c). It is shown that this method asymptotically gives accurate
results over the full range of parameter values, �,m and c.

PACS number: 03.65.−w

1. Introduction

The solution of the spheroidal wave equation is a very old subject, but it is still an important
theme in the existing literature. The importance of this equation arises in different topics of
physics such as the study of light scattering in optics [1], the nuclear shell model [2], theoretical
cosmological models [3] and atomic and molecular physics [4]. In all these topics, trying to
be more faithful to the geometry, the related physical system is expressed in the spheroidal
coordinate system, the natural coordinate system for describing a revolution ellipsoid. Using
the method of separation of variables in this coordinates system, the full wave equation can
be written as products of radial and angular spheroidal wave equations. The radial spheroidal
wave equation is always associated with a specified potential in each particular case, but the
angular spheroidal wave equation is general.

In recent decades, there has been a steady amount of ongoing work on the solution of the
angular spheroidal wave equation. Slepian [5] and Streifer [6] derived uniform asymptotic
expansions for the spheroidal functions and their eigenvalues, which were further developed
by des Cloiseaux and Mehta [7] and Dunster [8]. Other asymptotic results based on WKB
methods have been obtained by Sink and Eu [9] and Guimaräes [10].

On the other hand, several packages have been developed for the computation of the
angular spheroidal eigenvalues λm

� (c). Thompson [11], Li et al [12, 13], and Falloon et al
[14] are some of the most recent ones. All these attempts to obtain the eigenvalues λm

� (c)

rely very heavily on power series expansions and complicated recurrence relations. Accurate
results in these works are obtainable at the expense of extensive mathematical and numerical
manipulations.
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Here, this work applies the asymptotic iteration method [15, 16] for the computation of
the angular spheroidal eigenvalues λm

� (c), which is very easy to implement, and the results are
sufficiently accurate for practical purposes.

The asymptotic iteration method puts no constraints on the parameter values involved such
as �,m and c. It also handles λm

� (c) with large � which pose many numerical instabilities in
some of the previously mentioned methods. Therefore, the main motivation of the present work
is to overcome the shortcomings of those approaches, and to formulate an elegant algebraic
approach to yield a fairly simple analytic formula which will rapidly give the eigenvalues with
high accuracy. To the best of our knowledge, this is the first time the asymptotic iteration
method has been used to obtain the exact eigenvalues of the angular spheroidal wave equation.

In this spirit, this paper is organized as follows. In section 2 the asymptotic iteration
method for the angular spheroidal wave equation is outlined. The analytical expressions for
the asymptotic iteration method are cast in such a way that allows the reader to use them
without proceeding into their derivation. In section 3 we present our numerical results, and
then we conclude and remark therein.

2. Formalism of the asymptotic iteration method for the angular spheroidal
wave equation

The angular spheroidal wavefunctions S�,m(c; η) satisfy the following second-order differential
equation on the interval −1 � η � 1:

d

dη

[
(1 − η2)

d

dη
S�,m

]
+

[(
λm

� (c)
)2 − c2η2 − m2

(1 − η2)

]
S�,m = 0, (1)

where �, in this paper, is a positive integer (� = 0, 1, . . .), the integer m defined in the range
−� � m � � is the Lz angular momentum eigenvalue (in units of h̄ = 1), λm

� (c) are the
angular spheroidal eigenvalues that is to be determined by solving equation (1) and c is the
‘oblateness’ parameter. Despite the notation, c2 can be positive or negative. For c2 > 0
the functions are called ‘prolate’, while if c2 < 0 they are called ‘oblate’.

Equation (1) has singular points at η = ±1, and is to be solved subject to the boundary
conditions that the solution be regular at η = ±1. Only for certain values of λm

� (c), the
eigenvalues, will this be possible.

If we consider first the spherical case, where c = 0, the function S�,m(c; η) reduces to the

associated Legendre function, and
(
λm

� (c)
)2 = �(� + 1) are its eigenvalues. Here, the integer

� labels successive eigenvalues for fixed m. When � = m we have the lowest eigenvalue, and
the corresponding eigenfunction has no nodes in the interval −1 � η � 1. When � = m + 1
we have the next eigenvalue, and the eigenfunction has one node inside (−1, 1); and so on. A
similar situation holds for the general case c2 �= 0.

In order to apply the asymptotic iteration method, we have to investigate the behaviour
of the solution near the singular points η = ±1. Substituting a power series expansion of the
form

S�,m(c; η) = (1 ± η2)α
∞∑

k=0

ak(1 ± η2)k, (2)

into equation (1), we find that the regular solution has α = m/2. Without loss of generality,
we can take m � 0 since m → −m is a symmetry of the equation. Therefore, we get an
equation that is more tractable to the method if we factor out this behaviour.

Accordingly, we set

S�,m(c; η) = (1 − η2)m/2y�,m(c; η), (3)
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then the new function y�,m(c; η) will satisfy a second-order homogeneous linear differential
equation of the form

(1 − η2)
d2y�,m(c; η)

dη2
− 2(m + 1)η

dy�,m(c; η)

dη
+ (ε − c2η2)y�,m(c; η) = 0, (4)

where

ε ≡ (
λm

� (c)
)2 − m(m + 1). (5)

Both equations (1) and (4) are invariant under the replacement η → −η. Thus the
functions S�,m(c; η) and y�,m(c; η) must also be invariant, except possibly for an overall scale
factor.

The systematic procedure of the asymptotic iteration method begins by rewriting
equation (4) in the following form

y ′′
�,m(c; η) = λ0(η)y ′

�,m(c; η) + s0(η)y�,m(c; η), (6)

where

λ0(η) = 2(m + 1)η

(1 − η2)
and s0(η) = −ε − c2η2

(1 − η2)
. (7)

The primes of y�,m(c; η) in equation (6) denote derivatives with respect to η.
Now, in order to find a general solution to this equation we rely on the symmetric structure

of the right-hand side of equation (6). Thus, if we differentiate equation (6) with respect to η,
we obtain

y ′′′
�,m(c; η) = λ1(η)y ′

�,m(c; η) + s1(η)y�,m(c; η), (8)

where

λ1(η) = λ′
0(η) + s0(η) + λ2

0(η) and s1(η) = s ′
0(η) + s0(η)λ0(η).

Likewise, the calculations of the second derivative of equation (6) yield

y ′′′′
�,m(c; η) = λ2(η)y ′

�,m(c; η) + s2(η)y�,m(c; η), (9)

where

λ2(η) = λ′
1(η) + s1(η) + λ0(η)λ1(η) and s2(η) = s ′

1(η) + s0(η)λ1(η).

Thus, for (n + 1)th and (n + 2)th derivatives, n = 1, 2, . . . , we have

y
(n+1)
�,m (c; η) = λn−1(η)y ′

�,m(c; η) + sn−1(η)y�,m(c; η), (10)

and

y
(n+2)
�,m (c; η) = λn(η)y ′

�,m(c; η) + sn(η)y�,m(c; η), (11)

respectively, where

λn(η) = λ′
n−1(η) + sn−1(η) + λ0(η)λn−1(η) and sn(η) = s ′

n−1(η) + s0(η)λn−1(η).

(12)

The ratio of the (n + 2)th and (n + 1)th derivatives can be expressed as

d

dη
ln

(
y

(n+1)
�,m (c; η)

) = y
(n+2)
�,m (c; η)

y
(n+1)
�,m (c; η)

=
λn

(
y ′

�,m(c; η) + sn

λn
y�,m(c; η)

)
λn−1

(
y ′

�,m(c; η) + sn−1

λn−1
y�,m(c; η)

) . (13)

For sufficiently large n, we can now introduce the ‘asymptotic’ aspect of the method, that is

sn(η)

λn(η)
= sn−1(η)

λn−1(η)
≡ β(η), (14)



1302 T Barakat et al

thus equation (13) can be reduced to

d

dη
ln

(
y

(n+1)
�,m (c; η)

) = λn(η)

λn−1(η)
, (15)

which yields

y
(n+1)
�,m (c; η) = C1 exp

(∫
λn(η)

λn−1(η)
dη

)
= C1λn−1(η) exp

(∫
(β(η) + λ0(η)) dη

)
, (16)

where C1 is the integration constant, and the right-hand of equation (16) follows from
equation (12), and the definition of β. Substituting equation (16) into equation (10) we
obtain a first-order differential equation

y ′
�,m(c; η) + β(η)y�,m(c; η) = C1 exp

(∫
(β(η) + λ0(η)) dη

)
, (17)

which, in turn, yields the general solution to equation (6)

y�,m(c; η) = exp

(
−

∫ η

β(η′) dη′
) [

C2 + C1

∫ η

exp

(∫ η′

{λ0(η
′′) + 2β(η′′)} dη′′

)
dη′

]
.

(18)

Perhaps it should be noted that one can construct the spheroidal wavefunctions S�,m(c; η) from
knowledge of β. The work on this issue is in progress, and is planned to be reported briefly.
However, such a study lies beyond the scope of our methodical proposal.

3. Numerical results for the angular spheroidal eigenvalues λm
� (c)

Within the framework of the asymptotic iteration method mentioned in section 2, the angular
spheroidal eigenvalues λm

� (c) are calculated by means of equation (14). To obtain the
eigenvalues λm

� (c) the iterations should be terminated by imposing a condition δn(η) = 0
as an approximation to equation (14). On the other hand, for each iteration, the expression
δn(η) = sn(η)λn−1(η)− sn−1(η)λn(η) depends on two variables: λm

� (c) and η. The calculated
eigenvalues λm

� (c) by means of this condition should, however, be independent of the choice of
η. Nevertheless, the choice of η is observed to be critical only to the speed of the convergence
to the eigenvalues, as well as for the stability of the process. In this work it is observed that the
best starting value for η is that value at which the effective potential of equation (1) takes its
minimum value. For this purpose, it is necessary to perform the variable change η → tanh(x),
mapping the finite interval (−1, 1) into the infinite one (−∞,∞), then equation (1) can be
rewritten as

− d

dx2
S�,m + Veff(x)S�,m = −m2S�,m, (19)

where the effective potential Veff(x) is

Veff(x) = −[(
λm

� (c)
)2 − c2] sech2(x) − c2 sech4(x). (20)

Veff(x) is an even function, its minimum value occurs when x = 0, which in turn implies that
η = 0. Therefore, at the end of the iterations we put η = 0.

The results of the asymptotic iteration method for λm
� (c) with different values of �,m and

c are reported in tables 1, 2, 3 and 4. In tables 1, 3 and 4 the angular spheroidal eigenvalues
λm

� (c) were calculated by means of 25 iterations only. While, in table 2, in order to reproduce
more accurate results, the angular spheroidal eigenvalues λm

� (c) were calculated by means of
33 iterations. The predicted eigenvalues λm

� (c) are all in excellent agreement with the exact
ones [9, 12, 17].
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Table 1. A comparison between the exact eigenvalues (λm
� (c))2 and the eigenvalues computed by

means of this work with 25 iterations for c = 1 and m = 0.(
λm

� (c)
)2

� Exact [9] Equation (14)

0 0.3190 0.3190
1 2.5931 2.5931
2 6.5335 6.5335
3 12.5145 12.5145
4 20.5083 20.5083
5 30.5054 30.5054
6 42.5038 42.5038
7 56.5028 56.5028
8 72.5022 72.5022
9 90.5017 90.5017

Table 2. A comparison between the exact eigenvalues (λm
� (c))2 and the eigenvalues computed by

means of this work with 33 iterations for c = 8 and m = 0.(
λm

� (c)
)2

� Exact [9] Equation (14)

0 7.2216 7.2216
1 22.0921 22.0921
2 35.7064 35.7064
3 47.7571 47.7571
4 58.0167 58.0167
5 67.3646 67.3647
6 77.8251 77.8252
7 90.6913 90.6914
8 106.0116 106.0116
9 123.5771 123.5771

Table 3. A comparison between the exact eigenvalues (λm
� (c))2 and the eigenvalues computed by

means of this work with 25 iterations for c = 8 and m = �.(
λm

� (c)
)2

� m Exact [9] Equation (14)

0 0 7.2216 7.2216
1 1 8.3000 8.3000
2 2 11.5278 11.5278
3 3 16.8867 16.8867
4 4 24.3549 24.3549
5 5 33.9121 33.9121
6 6 45.5411 45.5411
7 7 59.2276 59.2276
8 8 74.9605 74.9605
9 9 92.7310 92.7310

The results of this work have shown that the asymptotic iteration method is very easy to
implement for calculating the angular spheroidal eigenvalues λm

� (c), and it is quite flexible in
the sense that it works very well over the full range of parameter values. Moreover, the obtained
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Table 4. Selected output of eigenvalues (λm
� (c))2 computed by means of this work with 25

iterations for different values of c, � and m.

(
λm

� (c)
)2

� m c2 Exact [12] Equation (14)

2 2 0.1 6.01427 6.01427
2 2 1 6.14095 6.14095
2 2 4 6.54250 6.54250
5 2 1 30.4361 30.4361
5 2 16 36.9963 36.9963

11 4 −1.0 131.560 131.560

eigenvalues are not limited by the magnitude of c, and satisfy a simple ordering relation.
Therefore, we can unambiguously select the correct starting eigenvalue. This represents a
significant advantage over the tridiagonal matrix method [14] in which the eigenvalues are not
in order, and hence to choose the correct matrix eigenvalue, one must use an iterative process
to move towards the starting value.

As a concluding remark, we would like to point out that the accuracy of the results
increases as the number of iterations increases, and this method can be applied to compute the
eigenvalues with arbitrary complex parameters.
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